
WHITE PAPER:
REST API for Fast and Intuitive Integrations

Written by Robert Baron, Systems Architect info@jestais.com
www.jestais.com

TABLE
OF CONTENTS

A B S T R A C TPG. 3

I N T R O D U C T I O N

S O L U T I O N

S U C C E S S S T O R I E S

C O N C L U S I O N

C O N T A C T U SPG. 10

PG. 3

PG. 8

PG. 3

PG. 5

PG. 8

PG. 9

PG. 10

2

This white paper describes Jesta’s REST-based API. It
elaborates on the reasons why the API was built, the
architectural design decisions made during development, the
API's features and capabilities, and the problems that the API
is solving. The REST API has been used in several integrations
for many Jesta customer implementations. Success stories
are included on page 8.

INTRODUCTION

ABSTRACT

E-commerce sales to Jesta's Omnichannel
E-commerce inventory to Jesta's POS and Merchandising
Warehouse shipment updates to Jesta's Omnichannel

Warehouse inventory to Jesta’s Merchandising

POS transactions to client’s CRM
Human Resource Information System (HRIS) employees
list to Jesta’s POS

Jesta has a robust suite of ERP products that drives
omnichannel journeys from product design to direct-to-
consumer deliveries. Our customers are global retailers,
wholesalers and brand manufacturers of all sizes and
verticals. When a new client implements one or more of our
products, data integration is often required between the
client’s ERP and Jesta’s products. Some of the data needs to
be synced in real time.

Real-Time Data Syncing

Hourly Data Syncing

Daily Data Syncing

3

To respond to these client demands, Jesta
started to build various web services.
Several sets of web services have been built
over the years based on ad-hoc
specifications using different technologies
(WSDL, WCF, TCP, ASP.NET Web API,
etc. in Java, .NET, JavaScript, etc.); they
were hosted on various web servers (IIS,
Tomcat, WebLogic, etc.), including some
homemade servers.

Eventually it became clear that Jesta
needed a standard solution for these web
services and we set out to build a RESTful
API to expose the full functionality of all of
our products. The primary purpose of our
API is to make it easier and faster to
integrate with our clients’ ERPs, while also
supporting more effective integration
between our own applications.

Many years ago, when most ERP systems
were running on premise at a client’s head
office via the same LAN, integration could
be easily achieved through inbound and
outbound database tables. The exchange of
real-time data was attained by running
inbound and outbound processes every few
minutes. We could bridge the gap between
various database technologies using a
standard like ODBC or by using flat files.

Over the years, many retailers have shifted
from an on-premise ERP to one in the
cloud (whether public or managed). The
delocalization of ERPs made the use of
inbound and outbound database tables less
suitable because they required the set up of
a VPN to access the database over the
WAN. Often Internet speed and latency
made the exchange of data painful.

Clients have, however, been asking for even
more real-time data. Running inbound and
outbound database processes every few
minutes isn’t suitable for many business
processes any more. For example, when a
customer submits an order on a client’s
e-commerce site, the e-commerce
application must be able to check inventory
availability and immediately create a sales
order in Jesta’s system. When the
customer’s order is accepted, stock must
be adjusted accordingly in Jesta’s
Merchandising or POS system.

4

Jesta needed a standard solution for web services and set out to
build a RESTful API to expose the full functionality of our products

SOLUTION

5

adding columns to a database table
or creating a new stored database
procedure. All of it then has to be exposed
through our API for integration.

While common code can be reused from
one integration to another, it inevitably
needs to be modified, tested and debugged.
Writing code to expose all tables wouldn't
suffice because customization may very
well require the addition and/or
modification of database objects.

We could've designed our API as many
other companies do and expose all of our
system data ready for integration. In
addition to being a major challenge given
the tens of thousands of database objects
that we have, this would have provided very
little help for integration. The reality is that
every integration is custom. Every client
has unique needs and this requires that
APIs be built specific to each of them.

OData Standard
Rapid Development Environment

Our API architecture is based on two major
design decisions:

First, we wanted a common, consistent
syntax and semantic for our REST API. The
OData standard consists of just that. It
provides a well-defined syntax and
semantic, specifies how to expose
metadata, is technology agnostic, and
supports all data formats; SOAP-based web
services support XML exclusively. As we
implement new API integrations for our
clients, we'll continue to expand our base
set of OData features.

A second challenge is that every client’s
integration is custom and often
requires specific code to be written.
Customization often means creating a new
database view or modifying an existing one,

Architecture

available. For example, while one mobile
client retrieving a product image may
prefer to receive a binary image, another
client may prefer the image encoded in
base 64 format.

The OData standard has its own query
language that can be used by clients to
filter a collection of records based on field
values. The filters can be used to select
specific fields, page through records, sort
them or automatically expand records’
child (detailed) records. For efficiency, this
query language takes advantage of the
query capability of the underlying data
resource (SQL in the case of a RDBMS data
resource).

Discoverability

Metadata is available by sending a GET
request at the end of a specific API URL.
The metadata consists of an XML
document that describes every endpoint of
the API, how to call every custom action

Jesta’s REST API exposes data resources
and functionality, and allows clients to
implement these resources with read, create,
update and delete (CRUD) operations.

Database objects from all major Relational
Database Management Systems (RDBMS) are
automatically exposed using our DAL/API
endpoint code generation tool without
having to write any code. We only expose the
database objects needed by each client.

Our API is primarily for integration and is,
therefore, customized for each client.
With custom code, we can expose all data
resources virtually ranging from NoSQL
databases to Excel files and flat files. We
can also call into a client’s legacy system
using their API or SDK exposed via API
actions endpoint URLs.

Working with JSON

Data is for the most part exposed in the
JSON format, but other formats are

6

Key Capabilities

7

limited processing capabilities, they often
rely heavily on servers’ processing power.
Using our API they can readily tap into it.

Any web browser can be used to
communicate with our API through GET
requests to retrieve and query data
resources, and to even send commands.
For more complex interactions (POST, PUT,
UPDATE and DELETE) tools like Postman,
curl and others can be used. These
commands can be used to script the upload
or download flat files to interact with
legacy systems.

There are many applications and tools that
can consume an OData API out-of-the-box.
Notably, Microsoft Excel, Google Tableau,
SAP Salesforce, etc.

and function, all the available record sets
and their fields each with its name and data
type. Because metadata is surfaced in
the API, clients can discover the API
capability and act accordingly, and also
check for the availability of functionalities
and/or data resources.

API consumers can be any HTTP-capable
application. Many ERPs provide
extensibility points where custom actions
and functions can be implemented in
various programming languages. Today, all
of these programming languages can send
HTTP requests and all can be used to
connect to our REST API.

Mobile apps are the primary potential
consumers of our API. Because of their

SUCCESS STORIES
Besides exposing tables, (materialized) views, stored functions via GET requests and stored
procedures via POST requests, our API has already been used to solve several integration
problems. Note that POST, PUT, PATCH and DELETE requests are not normally performed
on tables because of data integrity; we prefer to provide functions for these operations.
Below are some real client challenges and our API solutions.

06

Challenge 1: Exposing Read-Only
Data Maintained in Excel

Our client assembles specific data for
custom orders in Excel files. When our
WMS prints custom orders, it needs to
retrieve specific information from the Excel
files to include on the custom order for the
workshop. The data contained in the Excel
files was unique to that client and adding it
to our WMS would have provided no value
to other clients.

The Solution: We used our REST API to
make the Excel data available to our WMS
print order procedure. The client continues
to maintain the custom order data in Excel
and overwrites the Excel files exposed by
the REST API whenever needed.

Challenge 2: Modifying Images

Product images are kept in our database.
The database normally stores high-
resolution images, but we have several
applications in which low-resolution
images are needed (a web catalog as

as opposed to a printed catalog, for
example). Other times, applications require
square images or another specific shape.

The Solution: We created a set of API
functions to resize, crop and/or modify
the resolution of images on the fly.

Challenge 3: Updating Distributed
Data

Our client wanted the ability to update
customer records in both our POS and
their third-party CRM. They initially
planned to exchange customer info via CSV
files daily. However, if a customer were to
visit the client’s store and connect to its
website on the same day, customer info
might change in both the POS and CRM.
When customer records were exchanged,
info may have been lost because the two
systems would've overwritten each other.

The Solution: The REST API was used to
exchange customer info in real time,
removing any possibility of conflict.

8

04

Challenge 4: Posting a CSV File
with Command-Line Tool

Our client wanted to export a list of all
employees from its HRIS in a CSV file daily
and send it to our Vision Store system.

The Solution: We created a specific POST
endpoint in our REST API to accept the CSV
file in the body of the request, parse it and
then update to our employees table. The
client used the curl command-line tool to
post the CSV file.

CONCLUSION

Successful integrations using our REST API
reinforces that the right design and
development decisions were made based
on years of integration experience.

Our API is drawing interest from existing
Vision Suite clients and we anticipate
that integration with future clients will be
even faster and easier with enhanced
performance.

9

Let's Connect!
For more information on Jesta I.S.'s REST API and Vision

Suite platform:

sales@jestais.com
www.jestais.com

